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The stochastic motion of protons and Heþ ions driven by Pc1 wave packets is studied in the context

of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers

exceed 10�4 nT2/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions.

Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions.

The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The

dependencies of observable quantities on the wave power and plasma parameters are determined,

and estimates for the heating extent and rate of particle heating in these wave-particle interactions

are shown to be in reasonable agreement with known empirical data. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926823]

I. INTRODUCTION

Pc1, or electromagnetic ion cyclotron (EMIC), waves

exhibit frequencies of 0.1 to 5.0 Hz, occur in the plasma-

sphere, and intensify during magnetic storms. Anisotropic

distributions of keV ring current (RC) protons provide a

source of free energy for EMIC wave excitation.1–3 Pc1

events typically last for more than several hours and appear

as coherent wave packets with repetitions period of tens of

seconds to a few minutes with typical broadband amplitudes

reaching values in the range of 1–10 nT. These waves usu-

ally exhibit mixed polarization because they belong to two

distinct branches: an ion whistler branch, and an Alfven-like

branch with a different polarization.4–7 These wave modes

can interact with keV ions, and the intensification of ion

fluxes associated with wave events has been shown in in situ
measurements.6,8 Along with the expected keV protons,

greatly enhanced fluxes of cool protons (30–300) eV have

also been observed by Engebretson et al.,4 Pickett et al.,5

and Arnoldy et al.9 Information about Heþ ion energization

was obtained from the Geostationary Operational Environmental

Satellite (GOES) and has been interpreted as a result of the

ion-EMIC wave interaction.10

The association of Pc1 wave events with intense ion

fluxes merits further attention. Simultaneous increases in

measured fluxes and wave fields suggest that the Pc1 waves

energize the ions. In this paper, we explain the idea of sto-

chastic particle heating.11 This idea is based on nonlinear

(NL) resonant wave-particle interactions, which can cause

stochastic particle motion and consequently particle heating.

The paper is organized as follows. Sec. II considers the

polarization and dispersion properties of Pc1 wave packets.

Sec. III provides the original equations of motion of particles

driven by EMIC waves. Sec. IV touches on the problem of

acceleration and energization of ions via gyroresonance with

these waves. Sec. V examines proton heating via Cherenkov

resonance with the electrostatic component of oblique Pc1

wave packet. Sec. VI discusses and summarizes the main

results obtained in this work.

II. DISPERSION OF NONLINEAR Pc1 WAVE PACKETS

The dependence of the Fourier-harmonics of EMIC

waves on the wave number k in the range ðkvAÞ2 � X2
p is

given by the relation12,13

xðkÞ ¼ kvAð16kvA=2XpÞ; (1)

where the negative sign stands for the Alfven-like branch,

Xp is the proton gyrofrequency, vA ¼ cXp=xL is the Alfven

speed, c the light speed, and xL the proton Langmuir fre-

quency. Here, c2 � v2
A, and the thermal ion velocity, vTi

,

obeys jx� Xij � kvTi
, and v2

A � v2
Ti
; vTi

. EMIC waves are

believed to radiate from the ring current region through gyro-

resonance with keV RC protons. Leaving aside the problems

that arise in such models for EMIC wave generation,14 we

take for granted the existence of such waves. The RC origin

and dispersion relationship (1) have been confirmed by

measuring EMIC wave polarization, velocity, and disper-

sion.4,7,15 The contribution of the heavy ion current to wave

dispersion is small, and can be neglected provided c2 � v2
A.4

As is known, any NL EMIC wave with an NL profile en-

velope, as well as NL whistlers, can be described by a non-

linear Schr€odinger (NLS) equation16 or its modifications.17

The NL dispersion relation corresponding the NLS equation

takes the form,

x kð Þ ¼ x k0ð Þ þ
1

2

@2x
@k2

� �
k0

� Dkð Þ2 þ @x
@a2

� �
k0

� a2; (2)

where x(k0) is the frequency of the principal mode, Dk the

width of the k-spectrum, and a the wave amplitude. One also

assumes that the second and third terms in Eq. (2) are small

compared to x(k0).
16 The NLS wave equation itself and NL

dispersion law (1) remain the same if the relative rate of change

of the frequency _x; _x=x2, and the wave dispersion @k=@zk2

along the external magnetic field B, are much less than 1. Since

_x=x2 is of the order of 1/xT and @k=@zk2 � 1=kL or 1/kl,a)Electronic mail: george.v.khazanov@nasa.gov
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where T, L are the time- and spacescales of the wave packet

and l is the spacescales of inhomogeneity in B, we write the

conditions for the applicability of the NLS equation as

1=xT; 1=kL; 1=kl ¼ e; e� 1: (3)

In wave event measurements by remote monitoring the wave

spectra, this frequency drift emerges as a consequence of the

difference in phase velocities caused by the NL dependence

of frequency on the wavenumber k. A more important effect,

the so-called self-modulation of the wave, is due to the peri-

odic nature of the wave amplitude, which introduces a time-

dependent modulation of the wave frequency. The third term

in Eq. (2), proportional to the square of the slowly varying

amplitude, describes this effect entirely.11 For further details,

the reader is referred to this paper.11 Typical values of _�
measured by Feygin et al.,15 Mursula,18 and Pickett et al.5

are _� � ð1� 3Þ � 10�2 Hz/s, � ¼ x=2p � 1:5 Hz, so condi-

tion (3) is trivially satisfied. So, any NL EMIC wave can be

described by a wave solution of an NLS equation conforming

to the problem. On the other hand, any wave with an NL enve-

lope has a wide spectrum of strongly bounded Fourier har-

monics, and hence can be represented in the form of an NL

wave packet. Substantiation of the approach can be found in

the monograph,19 and in the physics of radiation belts (RBs)

this approach has been introduced in Refs. 20 and 21. These

authors also showed that both representations are identical.11

The dispersion relation (1), at least for the Alfven

branch of EMIC waves propagating at an arbitrary angle #
to the external magnetic field, remains applicable, with

kz ¼ k cos# replacing k. If the wave propagates nearly across

B, a term ðktrÞ2, where r is the ion gyroradius, also emerges

in Eq. (1).13 The subscripts z and t stand for the components

of a vector quantity, parallel and perpendicular to the back-

ground magnetic field.

Anderson, Erlandson, and Zanetti22 attributed the left-

hand and/or right-hand polarization of these waves to

oblique wave propagation. Indeed, the unusual polarization

could be caused by the simultaneous generation of the two

branches of EMIC wave by RC protons. Another possible

explanation for this baroque polarization is related to the

transverse-longitudinal nature of the oblique wave in the

generic case. Consider low-frequency mixed modes. These

perturbations are partially electrostatic and partially electro-

magnetic, and differ from the usual EM waves in that the for-

mer contains a potential electric field El
z along B.13 The

relationship between the potential component El and electro-

magnetic Et can be found using the equation of continuity,

two Maxwell equations, and Poisson’s equation.12 From

those equations, the following expression for El/Et results:

El=Et ¼ ðkc=xÞ2Jl=Jt;

where J is the electric current driven by these low-frequency

perturbations. Since kc=x � c=vA, and c=vA � 1, El would

be non zero even when a strong anisotropy of the electric

current, Jl=Jt � 1, is present. Note that both the low-

frequency band of the oblique Alfven mode, the so-called ki-

netic Alfven wave, and the high-frequency oblique whistler

wave have strong potential components that are comparable

to the values of the Et-components.23–26

III. ORIGINAL EQUATIONS OF ION MOTION

Consider an ion of charge qi¼ 1 and mass mi, which

gyrates in a background magnetic field B and resonantly

interacts with a packet of circularly polarized EMIC waves.

The Hamiltonian of the problem is of the form

H pz; z; I; h; tð Þ ¼ H0 pz; Ið Þ þ

ffiffiffiffiffiffiffiffiffi
2XiI

mi

s
2BwJ01 ktrð Þ

kz
; (4)

H0 ¼ p2
z=2mi þ XiI; (5)

given on a 4-D manifold called phase space by two pairs of

variables, ðpz; zÞ and ðI; hÞ, where I,h and pz are the action,

gyro-angle, and pz-momentum, respectively, Bw is the mag-

netic component of the wave field, and J01ðktrÞ is the deriva-

tive of the Bessel function with respect to its argument.

We shall assume that the length scales of the inhomoge-

neities of these fields and the ratio B=Bw are sufficiently

great that the standard description of particle motion is appli-

cable. Then, the ion gyration and motion along B are

described by

_h ¼ @H

@I
¼ Xi; _z ¼ @H

@z
¼ vz; vz ¼ pz=mi: (6)

These equations determine the change of phase of a particle

in the wave field,

_wðvzÞ ¼ kzvz þ sXi � x; (7)

where s 2 Z; Z is the set of all integers, including null.

In the following, we are concerned only with the dynam-

ics of ions in the vicinity of the principle resonances,

_wðvzÞ ¼ kzvr þ sXi � x ¼ 0; s ¼ 0; 1: (8)

In this case, w varies slowly, _w=xw � e, and therefore the

variables pz and I also vary slowly over one wave period

x�1; _pz=xpz � e; _I=xI � e, where e is a small parameter,

e ¼ 1=xT.

Now the equations of motion, _pz ¼ �@H=@z; _I
¼ �@H=@h, associated with Hamiltonian (4), become

_vz ¼ Xivt

2bJ01 �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p sin w

X
n

d t=T � nð Þ; (9)

_vt ¼ sXivA
Xi

x

2bJ01 �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p sin w

X
n

d t=T � nð Þ; (10)

where all of the perturbation terms, including those describ-

ing mirror effects, average to zero except for s¼ 1.11 We

have used here the representation of the NL wave field in the

form of the wave packet,

Bw z; h; tð Þ ¼ B
bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pD�T
p cos w

X
n

d t=T � nð Þ;

b ¼ Bw
0 =B; vz � vA; n 2 Z; (11)

where Bw
0 is the peak value of the wave field, D� is the width

of spectrum, T is the envelope period, and dð�Þ is the Dirac

072901-2 Khazanov et al. Phys. Plasmas 22, 072901 (2015)
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function. We have also applied the relation XiI ¼ miv2
t =2 for

the energy of gyromotion, and we assume that the character-

istic phase velocity is approximately equal to the Alfven

speed.

The phase flow of this system conserves the invariant of

motion,

v2
t � 2sðXi=xÞvAvz ¼ C; (12)

where C is a constant which is determined by the initial reso-

nance condition. The invariant reduces the dimensions of

phase space from four to two.

A further simplification of the system is related to the

generic behavior of periodic Hamiltonian systems which are

usually described in terms of maps. The method of finding

these maps involves a transformation g1 realized by phase

flow at one period.27 By using the equation for particle phase

(7), and either equation from sets (9) and (10) along with the

invariant of motion (12), we can reduce in general the system

to the map gn,

gn : unþ1 ¼ un þ Q sin wn; wnþ1 ¼ wn þ Fðunþ1Þ mod2p;

(13)

where u is a new action variable, Q the control parameter,

differentiable function F(u) describes the shift of phase

acquired by the particle, and the values of ðun;wnÞ are

taken at tn¼ nT. These transformations constitute the group

gn ¼ ðg1Þn that acts on the 2D-manifold M (phase space) as a

dynamical system given by the pair ðM; gnÞ. The problem

defined in this way can be treated analytically as well as

numerically. First, we observe that the set of NL difference

equations (13) is a measure-preserving map for the canonical

pair ðu;wÞ. This can be corroborated by direct computations

of the Jacobian detJ ¼ 1; J ¼ @ðunþ1;wnþ1Þ=@ðun;wnÞ. The

qualitative behavior of the system can be understood by cal-

culating the multiplier jdwnþ1=dwn � 1j ¼ QF0; F0 	 dF=du.

Provided that QF0 
 1, a local phase instability arises, and

the dynamics is thought to become chaotic.19 A more descrip-

tive portrait of the bifurcation to chaotic behavior is provided

by the topology of phase space, which is closely related to the

dynamics. The topological modification of phase space is

known to occur when the condition jtrJj � 1 
 2, where trJ is

the trace of Jacobi matrix, is fulfilled.27 Applying this condi-

tion to the system gives the criterion

QF0 
 1: (14)

If it is valid, the system will exhibit robust chaotic motion on

a strange attractor (SA) tightly embedded in phase space. In

this case, the phase trajectory explores the entire phase space

energetically accessible to it; the upper bound of the SA, ub,

corresponds to the upper value of continuous invariant u-

spectrum, and the time of relaxation to this uniform distribu-

tion is determined by the equation

td ¼ 2u2
b=D; (15)

where D is a coefficient of diffusion in u.

IV. STOCHASTIC ION HEATING

Consider the dynamics of ions which interact with Pc1

wave packets via gyroresonance with Doppler-shifted fre-

quency xþ kjvzj,

R ¼ ðXi � xÞ=x: (16)

Invariant (12) physically associated with the resonance

becomes

vþ w2=ð2Xi=xÞ ¼ R: (17)

Both equations are written in the dimensionless variables

v ¼ jvzj=vA; w ¼ vt=vA; R ¼ vr=vA: (18)

For heavy helium ions, such a physical situation arises when

the principal frequency of the wavepacket lies just below the

helium gyrofrequency Xh.6,7 In this region, strongly coherent

wave signals with repetitive structure are observed. The

spectral power of these waves with left-to right handed

polarization for small nonzero angles and envelope timeper-

iods � 100 s were measured to be 10–100 nT2/Hz.

To argue the problem in terms of the map (13), we integrate

Eq. (10) and the equation for phase (7) eliminating the variable

vz with the help of the invariant of motion (12), to obtain a set

of NL difference equations that map R� S onto itself,

wnþ1 ¼ wn þ ðXh=xÞ2ð2p�2PTÞ1=2
sin wn; w 2 R; (19)

wnþ1 ¼ wn þ ðw=2XhÞxTw2
nþ1 mod2p;w 2 S; (20)

P ¼ b2=D�; b ¼ Bw
0 =B; (21)

where P is the spectral power normalized to B2, and J01ð�Þ
¼ 1=2 for a quasi-parallel wave.

By using condition (14) and the invariant of motion

(12), we find the range of w-values, (wa, wb),

wa ¼ x=XhxTð2p�2PTÞ1=2; w2
b ¼ ð2Xh=xÞR; (22)

where the dynamics becomes stochastic.

It turns out that the upper bound of the w-spectrum is

defined entirely by the dynamical invariant (12), which lim-

its the spectrum. On the other hand, the invariant expressed

as a function w(v) describes an anisotropic ion distribution

(isodensity level line at a fixed value of R), which exhibits

the shape of a horseshoe or pancake in w–v phase space.28

The prediction of Eq. (22) agrees reasonably well with the

numerically determined w-spectrum from the map in the range

of interest shown in Figure 1. Here, we introduce a phase shift

w! wþ wa in the phase-advanced equation to make the

resulting set of equations symmetric about the w-axis.

To show that these dynamics are actually chaotic, we

define the correlation function of phase by

CðiÞ ¼ ð1=NÞ
X
n2N

wðnÞwðnþ iÞ; (23)

where i is the step lag and N is the total number of iteration

steps. Numerical calculations yield the result shown in
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Figure 2, indicating that C(i) falls off rapidly with the num-

ber of map iterations.

There is no doubt that this mixing motion takes place on

a SA, the lower and upper bounds of which are given by Eq.

(22). The stochastic motion leads to the uniform distribution

on the SA

f ðwÞ ¼ 1=wb; (24)

provided the inequality wa � wb is valid. Then from Eq.

(19), we calculate the coefficient of diffusion in w,

D ¼ pðXh=xÞ4�2P: (25)

We have employed the definition D ¼ hðunþ1 � unÞ2i=T in

deriving (25), where h�i denotes the phase average.

Thus, the time of relaxation to the distribution (24), td, is

found to be

td ¼ ð4R=p�2PÞðx=XhÞ3; (26)

as it appears from the expressions for wb and D.

In accord with Paulson et al.,7 we take the following param-

eter values, vA=c ¼ 10�3; � ¼ 0:4 Hz, �h ¼ 0:6 Hz, T¼ 100 s,

and P¼ 10�3 1/Hz, to evaluate observables. Substituting these

values into Eqs. (16) and (21) gives R ¼ 0:5 wa ¼ 10�2, and

wb ¼ 1:25, so that the inequalities

wa � R�wb (27)

are fulfilled. Then in conformity with Eq. (27), we find the

energy of Heþ ions in resonance, Er ¼ R2EA;Er ¼ 0:5 keV,

the upper value of energy spectrum, Eb ¼ w2
bEAð¼ 3 keV),

which arises out of the invariant, and the relaxation time

td ¼ 1� 103 s, which result from Eq. (24).

We also consider resonant ion cyclotron heating (RICH)

of protons. It is clear that the equations of proton motion are

identical in form to the maps (19) and (20), indicating that

the system undergoes bifurcation to stochastic behavior at

parameter values given by Eq. (22) with Xp replacing Xh.

Note that condition (27) places some restrictions on the

permissible values of P

P� � Pc; Pc ¼ B2ðx=XiÞ2=2p�2TðxTRÞ2; (28)

which appear from Eqs. (16) and (22). As a consequence, in

sufficiently strong wave fields, the extent of particle heating

is determined by the expression,

DE=EA ¼ ðEb � EaÞ=EA ¼ ðXi=xÞ2 � 1; (29)

irrespective of P if P� Pc.

In the following estimates, we fall back on the paper of

Engebretson et al.,4 in which fine patterns of Pc1 wave

packet are presented. The authors observed predominantly

transverse 1.8 Hz quasiparallel waves with peak amplitudes

of 4–6 mV/m measured by the Cluster spacecraft. These

intense wave packets with 10 nT2/Hz spectral power exhibit

the shape of repetitive coherent signals with typical envelope

timeperiods T ’ 25 s. Applying these values to Eqs. (28)

and (29), we find Pc ¼ 10�4 nT2/Hz at B ’ 300 nT, the

extent of heating, DE ¼ 4 keV at EA ¼ 0:5 keV and

Xp=x ¼ 3. Equation (26) allows us to find the relaxation

time td � 300 s, which roughly amounts to 100 timeperiods

of wave. Finally, the average heating rate of the process,
_E ¼ Eb=td, proportional to P and EA, is about 20 eV/s, as fol-

lows from Eqs. (22) and (26). This result agrees well with

the experimental data of Arnoldy et al.9 Note that Figure 1

shows that the stochastic motion of particle in waves breaks

the first adiabatic invariant l, where l ¼ mv2
t =2B.

Consequently, we may only discuss the probable values of l,

and predict by means of f(w) and wb the typical mean values

of l, hli ¼ ð2XiR=3xÞðEA=BÞ; l � 0:66� 10�8 J/T.

EMIC waves, which are generated by keV RC protons,

cause strong localized proton precipitation into the upper

atmosphere.29 The interplay between the resonant part of

anisotropic distribution of RC protons and EMIC waves

seems to help explain why intense proton fluxes are

observed.

Although cyclotron heating of protons is possible only

through the resonance, NL coupling with EMIC waves with a

principal frequency just above the helium gyrofrequency can

effectively accelerate heavy He þ ions through the resonance

R ¼ 1� Xh=x: (30)

The equation is written with the preceding notation.

FIG. 1. A stochastic trajectory for systems (19)–(21) at Q¼ 5. The variable

w is normalized as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=XhxT

p
w ¼ u; Q ¼ ðxT � 2p�2PTÞ1=2ðXh=xÞ3=2

, and

in the phase-advanced equation the phase shift u! uþ ua has been made,

ua ¼ wa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=XhxT

p
, wa is given by Eq. (22). Initial values of w and u are

close to zero.

FIG. 2. Correlation function C(i) of systems (19)–(21) with Q¼ 5.
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This type of wave-particle interaction obviously con-

serves the following invariant:

v� ðx=2XhÞw2 ¼ R: (31)

The physical situation can arise, for example, in the interac-

tion of Heþ ions with Pc1 wave packets, observed by

Engebretson et al.4 and Pickett et al.5

The dynamical invariants, (17) and (31), are qualita-

tively different, and as a consequence, the particle behaviors

can be substantially different. However, when vz < vA, the

local topologies of these invariants are identical. Direct anal-

ysis of the set (24) in this range shows that the equations of

particle motion would look exactly like the map (19) and

(20), exhibiting behavior with some features similar to that

of the systems (19) and (20).Unlike the preceding case, the

dynamical invariant (31) no longer limits the v-spectrum,

consequently, we can no longer use the representation (11)

in the range where the particle velocity along the direction of

external magnetic field exceeds the Alfven speed substan-

tially. Instead, we should use the representation

Bw ¼ ðB0=
ffiffiffiffiffiffiffiffiffi
DkL
p

Þ sin w
X

n

dðz=L� nÞ; (32)

where L is the spacescale of wave packet and Dk is the width

of packet in k-space.11,19

One then assumes that DkL ¼ 2pD�T, where D� is the

width of frequency spectrum, L¼ vAT, and approximates the

invariant (31) by the equation,

w2 ¼ ð2Xh=xÞv: (33)

Approximations of this kind are inevitable when dealing

with complex dynamical systems.

Substituting Eq. (32) in Eq. (9) gives the following

equation:

dvz ¼ Xhvt

ffiffiffiffiffiffiffiffi
P

2pT

r
sin w

L

vz

X
n

d z� nLð Þdz; (34)

where we have used the equation dt ¼ dz=vz, dvz and dz are

considered to be 1-forms, and L=vz is the time taken by the

particle to pass through the wave packet.

One eliminates vt from the equation with the help of Eq.

(33), and integrates Eq. (34) along with the equation for par-

ticle phase, to obtain the map

unþ1 ¼ un þ ð3Q=2Þ sin wn; wnþ1 ¼ wn þ xTRu
�2=3
nþ1 mod2p;

(35)

given by the canonical pair ðu;wÞ, where

u ¼ v3=2; Q ¼ ðXh=xÞ3=2ð4p�2PTÞ1=2: (36)

Now the condition of topological modification applied to Eq.

(35) determines the upper bound, ub, of the u-spectrum

ub ¼ ðxTRQÞ3=5: (37)

We will take, according to Engebretson et al.,4 Xh=x
¼ 3=4; � ¼ 1:8 Hz, P� ¼ 10 nT2/Hz, B¼ 300 nT, and

T¼ 25 s, to obtain R ¼ 0:25; Q � 0:3, and vb � 4. Note that

the condition vb � R is easily satisfied.

The result (37) is borne out numerically, and Figure 3

shows an almost uniform u-spectrum. Consequently, the

relaxation time to the local equilibrium f ðuÞ ¼ 1=2ub is

td ¼ 2u2
b=D, where the coefficient diffusion D in u is deter-

mined by

D ¼ Q2=2s: (38)

We take into account the fact that the timeperiod

s ¼ L=vz ¼ T=v, over which the phase averaging is per-

formed, hinges on the velocity vz, to find

D ¼ D0u2=3; D0 ¼ ð9=2ÞðXh=xÞ3p�2P; td ¼ 2v2
b=D0: (39)

By making estimates of the extent and rate of heating due to

this type of interaction, it has been found that td � 1� 104 s,

ER ¼ R2EA ¼ 0:5 keV, Eb ¼ ðv2
b þ w2

bÞEA ¼ 40 keV, and
_E ¼ Eb=td � 4 eV/s at EA¼ 2 keV.

The values of ER and Eb define the boundaries of the

energy spectrum, which, in addition to their dependence on

EA, depend on the wave power as

td � P�0:6; Eb � P0:4; _E � P: (40)

We have shown above that it is impossible to accelerate pro-

tons out of the thermal plasma via gyroresonances, one needs

to invoke heating from oblique Pc1 waves via a Cherenkov

FIG. 3. A stochastic trajectory for system (35) at (a) Q¼ 1, (b) Q¼ 2,

xT ¼ 100.
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resonance with the potential component of an Alfven-like

wave.

V. PROTON HEATING VIA CHERENKOV RESONANCE

The injection problem of heating sufficiently energetic

protons remains unsolved. Pc1 wave packets oblique to B

have been observed frequently.4,5 Further comments on this

possibility were provided in Section II, and here we discuss

its consequences.

The Hamiltonian of the problem is

Hðpz; z; tÞ ¼ p2
z=2mi þ XiI þ Uðz; tÞJ0ðktrÞ; (41)

where J0ð�Þ is the Bessel function and the function U(z, t)
describes the spatio-temporal structure of potential wave

field

Uðz; tÞ ¼ ðU0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p

Þ cos w
X

n

dðt=T � nÞ;

w ¼ kzz� xt; vz � vA; (42)

and U0 the peak value of U.

It is apparent that I¼ const is the integral of motion

which, for simplicity, we set equal to zero and therefore,

J0ð�Þ ¼ 1.

The equations of proton motion, related to the

Hamiltonian, are

_vz ¼ kzðU0=m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p

Þ sin w
X

dn; (43)

_wðvzÞ ¼ kzvz � x; (44)

and the condition of the Cherenkov resonance arises from

Eq. (44)

R� 1 ¼ 0; (45)

written with the preceding notation.

In the Cherenkov resonance, slow protons, vz � vA, gain

energy by picking up wave energy in multiple encounters

with Pc1 wave packets. On the other hand, the mechanism of

Landau wave damping limits the energy spectrum from

below, so the lower boundary of spectrum is typically

defined by the condition, E� Ti; Ti � 1 eV.

Then, as above, we reduce the equations of motion (43)

and (44) to the map

vnþ1 ¼ vn þ xTðU0=mpv
2
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p

Þ sin wn; wnþ1

¼ wn þ xTvnþ1 mod2p; (46)

where v ¼ vz=vA. Then, we recognize in the system (44) the

familiar standard map30 that describes the transition of the

system to global chaotic behavior provided the magnitude of

wave field exceeds the value, Uc,

Uc ¼ mpv
2
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p

=ðxTÞ2; (47)

and consequently, El
c ¼ kzUc. In deriving Eq. (47), we have

again used condition (14). Now we estimate El
c for typical

parameters,4 El
c � 1� 10�3 mV/m. It is known that the

potential waves are associated with fluctuations of the charge

density dn,12 and that the magnitude of the wave field and

the fluctuation level dn=n are related by the Poisson equation

U0=mc2 ¼ ðxp=xÞ2ðvA=cÞ2ðdn=nÞ, where xp is the ion

plasma frequency. Equating this expression to Eq. (47)

yields dn=n ¼ ðx=xpÞ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�T
p

=ðxTÞ2Þ; dn=n � 10�9,

typically. Thus, we have learned that typical values for the

potential Pc1 waves seem to be relatively small. Reliable in-

formation about its values is still absent.4

Calculating the rate of diffusion at U 
 Uc yields

D ¼ ðU=UcÞ2=2ðxTÞ2T; (48)

so that the particle heating rate is given by the expression
_E ¼ EAD and _E � 1 eV/s at EA ¼ 0:5 keV, U=Uc ¼ 100,

and T¼ 25 s.

Note that the heating rate in this energy range depends

on the wave magnitude as _E � ðU=UcÞ2 and the process of

heating in Cherenkov resonances is sufficiently effective

because the heating time is roughly several tens of wave

packet timeperiods.

Now, we proceed to the problem of the dynamics of fast

protons driven by the potential Pc1 wave packet. In this case,

the resonant wave-particle interaction follows in the inter-

change of energy between waves and particles.12 Thus, the

mechanism serves as a limit to the particle heating that can

be achieved. In order to derive equations describing the dy-

namics of fast protons, whose particle speed is larger than

the Alfven velocity, vz> vA, we have to represent the poten-

tial field of the wave packet in the form (32), where U0 repla-

ces Bw
0 . In this way, we formalize the problem in terms of the

map,

unþ1 ¼ un þ Q sin wn; wnþ1 ¼ wn þ xT=
ffiffiffiffiffiffiffiffiffiffiffiffi
junþ1j

p
mod2p;

(49)

where the new variable u and the control parameter Q are

defined by

u ¼ v2; v ¼ vz=vA; Q ¼ 2ðU=UcÞ=xT: (50)

By the usual methods, we find the upper bound of the u-

spectrum,

ub ¼ ðU=UcÞ2=3; (51)

so that the upper boundary of energy spectrum is given by

Eb ¼ ubEAð� 10 keV) at U=Uc ¼ 100, and EA ¼ 0:5 keV. If

we choose vA=c ¼ 4� 10�3, the value agrees rather well

with Ref. 4 and Eb could be equal to �160 keV.

Numerically integrating the initial condition of the

map over 105 map iterations, we obtain ub ¼ ðU=UcÞ2=3

(Figure 4), indicating, as would be expected, the dominance

of chaotic motion on the strange attractor. Then, one calcu-

lates the correlation function C(i), given by Eq. (23) with the

average taken over 105 steps. Figure 5 shows that the func-

tion C(i) exhibits a very strong chaotic property of the

motion, i.e., a complete decorrelation in a few map periods.

Thus, the motion has been shown to be mixing, with the
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relaxation time to the invariant distribution f ðuÞ ¼ 1=2ub

given by td ¼ 2u2
b=D; D ¼ Q2=2s, where D is the coefficient

of diffusion, and s ¼ T=v is the period of averaging as a

function of the particle speed. With respect to the definitions

(50) and (51), we find

td ¼ TðxTÞ2ðUc=UÞ: (52)

As appears from Eqs. (51) and (52), the time of diffusion and

the average heating rate _E ¼ Eb=td are about 100 T and

EA=10T at U=Uc � xT � 100, respectively. Note that these

results show the following dependencies of the observable

quantities on the wave power:

Eb / ðU=UcÞ2=3; td / ðUc=UÞ; _E / ðU=UcÞ5=3: (53)

So, we conclude that the mechanism for heating of cool pro-

tons via Cherenkov resonance with the potential component

of Pc1 wave packet appears to be much more likely than

heating by any other, although the question remains open.

VI. CONCLUSION

A mechanism for stochastic ion acceleration based on

the resonance interaction of ions with nonlinear EMIC waves

has been proposed. The dynamics allow stochastic diffusion

in phase space to occur, and resonant particles are energized

in multiple collisions with EMIC wave. In ion cyclotron

heating, the heating is accomplished by resonances between

the gyrofrequency and Doppler-shifted wave frequency. In

sufficiently intense Pc1 wave packets, the spectral power of

which typically exceeds 10�4 nT2/Hz, the stochastic diffu-

sion leads to a new local equilibrium with a wide compactly

supported spectra of observables, the signature of chaotic

motion. We have shown numerically and analytically the ex-

istence of a chaotic solution as a consequence of the reso-

nance wave-particle interaction.

Another area of considerable interest is pitch angle scat-

tering and precipitation of RB ions into the upper atmos-

phere. A detailed treatment of the problem will be the topic

of future investigations. Another mechanism that has been

studied to explain ion heating is the Cherenkov resonance

with the electrostatic component of an oblique EMIC wave.

We estimate the critical magnitude of the potential wave

field El
c to be El

c � 10�3 mV/m typically, and find it to be

sufficient to account for the effect of proton heating via

Cherenkov resonance. However, it is not known whether

these potential EMIC wave packets have sufficient intensity.

It is highly desirable to determine whether the wave magni-

tudes can be significantly larger than El
c. The main effect of

the wave-particle interaction is to accelerate the bulk plasma

protons to the local Alfven speed. Typical Alfven speeds are

high enough, and El
c is small enough to be of interest for RB

proton acceleration.

The dynamical laws governing the time evolution of a

particle in wave-particle interactions lead to a set of nonlin-

ear difference equations. This set, along with an invariant of

motion, describes the appearance of strange attractors in a

certain parameter range. In this way, the dynamical system

can exhibit persistent chaotic behavior. The intensional theo-

retic structure of the model allows it to both interpret experi-

mental data and predict the behavior of the system in

different physical situations. The model has been used to

estimate typical values of observables which are consistent

with empirical data.

We conclude that these combined mechanisms of reso-

nant wave-particle interaction are most probably responsible

for the appearance of RB ions in the energy range from tens

of eV to hundreds of keV.
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FIG. 4. Phase space u� w for map (49) with xT ¼ 300 at (a) Q¼ 27, (b)

Q¼ 100.

FIG. 5. Correlation function C(i) of system (49) with Q¼ 27.
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